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Abstract. We consider the optimization of pre- and post filters surrounding a quantization system. The 

goal is to optimize the filters such that the mean square error due to quantization is minimized under the key 

constraint that the quantization noise variance is directly proportional to the variance of the quantization system 

input. Unlike some previous work, the postfilter is not restricted to be the inverse of the prefilter. With no 

order constraint on the filters, we present closed form solutions for the optimum pre- and post filters when the 

quantization system is a uniform quantizer. Using these optimum solutions, we obtain a coding gain expression 

for the system under study. The coding gain expression clearly indicates that, at high bit rates, there is no loss 

in generality in restricting the postfilter to be the inverse of the prefilter. We then repeat the same analysis with 

first order pre- and post filters in the form 1 + az'1 and 1/(1 + -yz'1). In specific, we study two cases : (a) FIR 

prefilter, IIR postfilter and (b) IIR prefilter, FIR postfilter. For each case, we obtain a mean square expression, 

optimize the coefficients a and 7 and provide some examples where we compare coding gain performance with the 

case of Q = 7. In the last section, we assume that the quantization system is an orthonormal perfect reconstruction 

filter bank. To apply the optimum pre- and post filters derived earlier, the output of the filter bank must be WSS 

which, in general, is not true. We provide two theorems, each under a different set of assumptions, that guarantee 

the wide sense stationarity of the filter bank output. We then propose a suboptimum procedure to increase the 

coding gain of the orthonormal filter bank. 

i Work supported in parts by Office of Naval Research grant N00014-93-1-0231, Tektronix, Inc., and Rockwell 

International. 



/. INTRODUCTION 

Consider the general scheme shown in Fig. 1.1 where the box labeled QS represents a quantization system. 

The input sequence x{n) is passed through a prefilter G(ejw) and produces an output y(n). The sequence y(n) 

is then quantized and filtered with a postfilter H(eju) to reproduce an estimate of the input denoted by x(n). 

The quantization system QS can be a simple uniform quantizer or a more sophisticated quantization system such 

as the M-channel uniform subband coder (SBC) shown in Fig. 1.2. Assuming that the quantization system is 

constrained to have a budget of b bits, the main theme in this paper is to jointly optimize the prefilter G{eiu) and 

the postfilter H(eJÜ0 such that the mean square value E{e2(n)} of the reconstruction error where e(n) = x(n)-i(n) 

is minimized. 

The renewed interest in the above classic problem was motivated by its relation to some issues in the area 

of subband coding. To elaborate more, consider the M-channel uniform SBC of Fig. 1.2. The boxes labeled 

Q represent subband quantizers, a set of uniform quantizers which are modeled by additive noise sources. An 

equivalent representation of the uniform SBC is given in Fig. 1.3. It consists of two matrices E(ei"') and R(eju), 

known respectively as the analysis and synthesis polyphase matrices. In the absence of quantizers, the filter bank 

(FB) is said to have the perfect reconstruction (PR) property if and only if R(eJU') = E-1(e-'u) [1]. A perfect 

reconstruction filter-bank (PRFB) is also known as a biorthogonal FB. An important subclass of uniform PR 

filter banks is the class of orthonormal or paraunitary (PU) filter banks. In this case, the analysis polyphase 

matrix exhibits the lossless property, mathematically expressed as E(eJU')Et(e-'w) = IVw, where the superscript 

f denotes the conjugate transpose operation. By choosing the synthesis polyphase matrix R(eJW) to be equal to 

E^(eJU), perfect reconstruction is guaranteed. 

In the presence of quantizers, perfect reconstruction is not possible because quantization is a lossy process. 

The FB output x(n) in this case is the original input x(n) plus a filtered version of the quantization noise denoted 

by v(n). Recently, several authors have considered optimization of filter banks when quantizers are present [2], 

[3], [4], [5]. The goal is to find a set of analysis filters such that the mean square reconstruction error at the FB 

output is minimized. For the sake of further discussions, we will from now on refer to the problem of optimizing a 

FB with the presence of quantizers as the subband coding problem. In a parallel fashion, interest in the so called 

energy compaction problem was growing [6], [7], [8]. Although the energy compaction problem might at first 

seem decoupled from the subband coding problem, Vaidyanathan [9] recently showed that the energy compaction 

problem and the subband coding problem for the case of an orthonormal SBC are actually highly connected. In 

fact, it turns out that the solution of both problems is the same for an M channel orthonormal PRFB. Such 

filter banks are referred to as optimum orthonormal filter banks. We will use some of the results of optimum 

orthonormal filter banks later in section V. 

Although the subband coding problem was carefully analyzed and solved for the class of orthonormal FB 

[ideal filter case], the M channel [M ^ 1] maximally decimated optimum biorthogonal FB remains for example an 
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open problem. Only the solution of the one channel case is well established [10]. Furthermore, it is well known 

[11] that, in the presence of quantizers, the synthesis polyphase matrix is not necessarily the inverse of the analysis 

polyphase matrix. Restricting ourselves to the class of biorthogonal FB when quantizers are present is therefore 

a loss of generality. A similar observation was given by Kovacevic [2] for the case where the subband quantizer Q 

is modeled as a Lloyd-Max quantizer. While the synthesis bank was optimized in [11], Vaidyanathan and Chen 

did not address the issue of optimizing the analysis bank. Furthermore, their allocation of subband bits was done 

before optimizing the synthesis bank. 

The joint optimization of the analysis bank and the synthesis bank together with the allocation of subband 

bits is quite a challenging problem. In this paper, we will provide a joint optimum solution of the pre- and post 

niters for the special case of M = 1. The system of Fig. 1.1 when the quantization system QS is a uniform 

quantizer can indeed be seen as the one channel case of the more general and difficult M channel problem. It is 

also a generalization of the so-called half-whitening scheme [10] where the postfilter is assumed to be the inverse 

of the prefilter. A summary of all the paper's results is given below. 

1.1. Brief Overview of Past Related Work 

The problem of finding optimum pre and postfilters around a noisy processor has been considered by various 

researchers especially in the field of communication theory. Costas [12] has jointly optimized pre and post filters 

over an analog communication channel subject to a power constraint on the prefilter. Chan and Donaldson [13] 

considered the same problem with the input to the postfilter sampled every T seconds. Berger and Tufts [14] 

optimized transmission and receiving filters in PAM communication systems to minimize the mean square error 

distortion resulting from channel noise and intersymbol interference. Malvar and Staelin [15] offered an iterative 

algorithm to design FIR pre- and postfilters in the presence of a downsampler and an upsampler. 

The first fundamental difference between the above problems and the quantization problem under study in 

this paper is the nature of the noise variance. In specific, we will always assume throughout this paper that the 

noise variance o\ is directly proportional to the variance of the input to the quantization system. Such a constraint 

describes in a fairly accurate manner the interaction between the quantization system granular noise output and 

the dynamic range of the quantization system input process. A simple example would be the relation o\ =c2-2h<j2y 

used in [10] for the case of a uniform quantizer. In a communication problem setting, the noise source variance is 

always assumed to be independent of the channel input signal statistics. The second main difference is that, in a 

communication problem, the prefilter is usually power constrained. This is not the case for the quantizer problem. 

Taking a different approach than the one used in communications, Jayant and Noll analyzed the case where 

the quantization system QS is a simple uniform quantizer and the postfilter H(e*") is simply the inverse of 

the prefilter, i.e., H(eiu>) = 1/G(eju}). Applying the Cauchy-Schwartz inequality, the magnitude response of the 

optimum filter can be found to be |Gopf(e^)| = l/5IX(e^)1/4. The system was therefore called the half whitening 



scheme [10] and represents an optimum one channel biorthogonal FB. Recently, Djokovic and Vaidyanathan [16] 

repeated the analysis for the case where the quantization system QS is a uniform orthonormal FB. 

1.2. Main Results and Outline of the Paper 

1. In the early sections of this paper, we will assume that the quantization system QS is a uniform quantizer. 

With similar assumptions as the one used by Jayant and Noll in the derivation of the half whitening solution, 

we derive optimum solution for the more general scheme of Fig. 1.1. In specific, closed form expressions for 

the optimum ideal pre- and post filters are derived in section II. 

2. In section III, using the optimum pre- and postfilters of section II, we derive an expression for the so called 

coding gain of the scheme of Fig. 1.1. The beauty of this expression is that it clearly indicates that there is 

no loss of generality in using the half whitening scheme if we are quantizing at high bit rate, a result that is 

intuitively very appealing. 

3. In section IV, we repeat the same type of analysis with first order pre and post filters with monic polynomials. 

We derive an expression for the mean square error for the cases of (a) FIR prefilter, IIR postfilter and (b) IIR 

prefilter, FIR postfilter. We then provide some examples where the coefficients of the filters can be computed 

numerically. We compare the coding gain of such cases with the one obtained from a first order one channel 

biorthogonal FB. Our results indicate again that unless we are quantizing at a very low bit rate, the solution 

of the more general scheme of Fig. 1.1 tends to the half whitening scheme. 

4. In section V, we assume that the quantization system QS is an orthonormal uniform PRFB. We do not however 

try to generalize the scheme proposed by Djokovic and Vaidyanathan. Instead, we propose a suboptimum 

procedure. We first develop two theorems that give sufficient conditions for wide sense stationarity of the 

output noise of a non-uniform orthonormal PRFB. We then apply the optimum pre- and post filters of section 

II at the input and output of the FB respectively to improve the performance of the original orthonormal 

PRFB. 

//. OPTIMUM UNCONSTRAINED PRE- AND POSTFILTERS 

The main goal of this section is to jointly optimize the prefilter G(eju) and postfilter H(eju) of Fig. 1.1 [QS 
A 2 

is a uniform quantizer] to minimize the mean square error = E{x(n) — x(n)}   subject to the constraint 

o\=cT™c\ (2.1) 

where ai is the quantization noise variance, c is a constant that depends on the statistical distribution of y(n) and 

the overflow probability, and a^ is the variance of the quantizer input. Our main assumptions for this section are 

summarized as follows : 

1. All random processes are zero mean, real and jointly wide sense stationary. 

2. The input x(n) and the quantization noise q(n) are uncorrelated processes, i.e., E{x(n)q(m)}  = 0Vn,m. 
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3. The quantization noise q(n) is white with variance cr2q as in (2.1). 

4. The filters H(eju) and G{eju) are not constrained to be rational functions, i.e., the optimum H(eJW) and 

G(ejiJ) can be ideal filters. Furthermore, no causality constraint is imposed. 

5. The power spectral density Sxx(eju) is positive for all u. Furthermore, when deriving the optimum solution 

for the prefilter, we will also require Sxx{ej,J) and its first derivative to be continuous functions of frequency. 

2.1. The Optimum Post Filter 

To develop optimum closed form solutions for both filters, we first fix the prefilter G(e?u) and optimize Hie'»). 

The optimum post filter solution is given in the following theorem. 

Theorem 2.1. For a fixed prefilter G{e*u), the optimum postfilter Hopt(eju) is the well-known Wiener filter and 

is given by : 

H    fj»\ - _J Sxx(e^)  (22) 

Proof. For a fixed prefilter G{eju), the input to the postfilter H(eju) is a filtered version of the desired signal 

embedded in quantization noise. This is a classical Wiener filtering setting and hence, the optimum postfilter 

is given by [17] Hopt(ej") = Sxz(eju)/Szz(eju) where z(n) = y(n) + q(n) is the noisy input to the wiener filter. 

Since x(n) and q(n) are assumed uncorrelated, it is easy to see that Sxz(ej,J) = Sxy(e
jül) = G{eiu>)""Sxx(elu;) and 

Szz{eju) = Syy{eiu) + a2 = \G{eju)f Sxx{eju) + a\ where the * denotes complex conjugation. Substituting in the 

above, we get 

H   ,&») -       G(e^rSxx(^) _J Sxx(e^) 

\G(ei")\2Sxx(ei«) + <T*      G{ei»)    g^^ + 

\G(ei-)Y 

Substituting the constraint (2.1) in this last equation, we obtain the above solution. ■ 

The optimum postfilter can be drawn as in Fig. 2.1. The Wiener filter of (2.2) is therefore expressed as a 

cascade of two filters : The first filter is the inverse of the prefilter G(eju). Its output is simply the original input 

x(n) embedded in a filtered version of the quantization noise process. The power spectral density of the filtered 
2 

Quantization noise process is ———ö- The second filter is the optimum Wiener filter for the output of the inverse 
\G(eJ«)f 

filter. 

Using the optimum post filter solution (2.2) and the constraint (2.1), we can now derive an expression for the 

mean square error only in terms of the prefilter G(eJW). 

£ = E{e\n)}  = E{e(n) ■ (x(n) - x(n))} 

= E{e(n) ■ x(n)}  = E{(x(n) - x(n)) ■ x{n)} (2.4) 
oo o° 

= RXX(0)-   53   h(k)-E{x(n)-z(n-k)} = Rxx(0)-   £   h(k) ■ Rxz(k) 
k=-oo k=-oo 



The second line is obtained from the first using the orthogonality principle. By Parseval's relation, we can then 

write £ = Rxx(0) - [   Sxz'(ejüJ)Hopt(eju)^- = [" Sxx(e
ju) - 5IZ*(e^)//(e^)^. Substituting with 

Sxz"{eju) = Sxy'(e
ju) = G(eju)Sxx(eju), we obtain 

-F SM(e*w)(l - Hopt(enG(en)^ (2.5) 

We note that the previous equation (2.5) holds only for Hopt(e^u). The reason is the use of the orthogonality 

principle in the derivation of (2.5). To obtain £ only as a function of the prefilter G(eju), we substitute Hopt{eju) 

into (2.5): 

£(\G\ b) = r c2~nS"^) /-, Sxx(e*)\G(e*)\2% du> 
''        J-nSxx(e^)\G(ei*)\2 + c2-™J*nSxx(e*)\G(ei<')\2£2ir [') 

The problem now reduces to finding the prefilter G(eju) that minimizes £ as given in (2.6). Two points are in 

order : 

1. Since the mean square error expression (2.6) is a function of \G(e3W)\ only, we will be actually seeking an 

expression for the squared magnitude response of the prefilter rather than G(eJa'). 

2. It is clear from (2.6) that trying to derive an optimum analytical expression for |G(eJU')| can be quite 

tedious. Instead of attacking the problem as it is, the idea is to transform the above unconstrained integral 

(2.6) into another integral with a power constraint on the prefilter output. The problem then becomes more 

mathematically tractable and a closed form expression for \G(ejw)\ can be obtained. It remains to show 

that the solution of both problems, the original one and the equivalent one, is the same. This is done in the 

following claim. 

Theorem 2.2. The squared magnitude response \Gopt(eju')\ that minimizes £(\G\,b), given as in (2.6), is also 

the solution of the following constrained optimization problem: 

fn c2-2bSxx(e^) dw 
mm /        v 9    — (2.7) 

|G(e^)|2    J-7rSxx(e^)\G(e^)\2+c2-^2ir ' 

subject to: 

F Sxx(en\G(en\2^- = 1 (2.8) 

Proof. The role of the magnitude response of the prefilter is basically two fold : It affects the spectral shape of 

the quantizer input signal y(n) and it changes the quantizer input variance <ry
2 and therefore the noise variance. 

The idea is to insert a multiplier a directly before the quantizer. The insertion of this multiplier affect only the 

variance of the quantizer input. One can then show that the mean square error at the output of this new system 

is unaffected by this multiplier. This, in turn, indicates that we can always fix the variance of the quantizer input 

signal y(n) without changing the solution of our original problem. To prove the argument formally, we proceed as 

follows: define 

GV1") = aG(ejw)    such that     /' Sxx(eju)\G (eju)\2^ = 1 (2.9) 
J-n 277 



Hence, 

'? = C2-» • /* S„(e*")|G(e*")|a£ = ^c2"» • £ Sxx(en\G (e^ = ^c2"» =  ^       (2.10) 

where c2, is the quantization noise variance of the system of Fig. 2.2 and is equal to c-2~2b. The postfilter H 0pt(e3U) 

of the new system is given by (2.3) with er2, and G'(eju) replacing a\ and G(eju) respectively. Substituting with 

a2, as in (2.10) and with G'(ejw) as in (2.9), it is easy to see that 

H'opt(en = ±Hopt(en (2.11). 

The filtering scheme of Fig. 2.2 can be redrawn as in Fig. 2.3. Following the same type of reasoning as before, 

the mean square error of the scheme of Fig. 2.3 can be thus expressed as: 

£ = J' S«(e*")(l - H'opt(^)G(en)~ (2-12) 

Substituting in (2.12) with G'(ejw) as in (2.9) and with H'' opt(e
ju) as in (2.11), it is clear that £' = £. ■ 

As a consequence of the above analysis, the white noise source variance is independent of the variance of the 

quantizer input <72..The mean square error expression can be written as : 

£ =  r c2~2bSxx(e^) du; (2 u) 
J-n Sxx(ei")\G(eJ")\2 + c2-2* 2TT 

2.2. The Optimum Prefilter 

The goal now is to find \G(ejw)f that minimizes (2.13) under the integral constraint (2.8). Since the magnitude 

squared response is always a non negative function of w, the optimum minimizing solution we seek must be non 

negative. This implicit condition is incorporated in the optimization problem as a pointwise inequality constraint. 

The next theorem gives an expression for the optimum magnitude squared response of the prefilter. 

Theorem 2.3.  Thepreßlter |Gopt(eJU')|2 that minimizes (2.13) under the constraint /    |Gopt(e-"")| — = 1 must 
J —7T 

have a magnitude response |G0J>t(eJU,)|   in the following form: 

GoPt(eju)\2 = { 

1 . ( 1 + c2 2b c2 \    V   u € [-7T, TT] for which the r.h.s is > 0 

n otherwise. 
(2-14) 

Proof. The minimization of the functional (2.13) under the integral constraint (2.8) and the positivity condition 

belongs to a class of calculus of variation problems known as isoperimetric problems [18], [19]. An outline of the 

major steps of the proof with the corresponding equations is given below. For more details, we refer the reader to 

appendix A. 
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Step 1. Problem set up. We transform the above constrained problem into an unconstrained one by lumping 

the integrand of (2.8) to the integrand of (2.13) by a parameter A(u). This leads to the following equation : 

 — £*^LJ     +\.Sxx(en\G(en\   HP (2-15) 
,Sxx(e^)\G(e^')\2 + c-2-2» ; 2TT 

The parameter \(u) takes care of the integral constraint (2.8) independent of frequency. We can therefore treat 

A(w) as a constant A. This last statement can be indeed proved formally [See page 175 of [20]]. The optimum 

magnitude response we seek must obviously be positive over all frequencies. To incorporate this constraint in our 

problem, we introduce an unspecified parameter ß(w) and consider now the problem of minimizing: 

c • 2-26 • Sxx(en + A . Sxx{^)\G{en\2 + ß{U)\G(e?»)\2) %■ (2.16) £G ,Sxx(e^)\G(e^)\2 + c-2-2b J^ 

The value of the parameter ß(u) is set in a way that assures that the positivity constraint is never violated. We 

note that, unlike the parameter A, ß(u) in this case takes care of a pointwise constraint. It must therefore be a 

function of u. 

Step 2. Necessary conditions for an extremum. The key necessary condition for a calculus of variation 

problem is the Euler-Lagrange equation. For this problem, this is equivalent to requiring \G(e3a)\ to satisfy the 

following equation at all frequencies : 

__d       / c-2-2b-Sxx(e^)       A  Sxx(e>u)\G(e?u)\2) = - ß(u) (2.17) 
fl|G(e*")l      \Sxx(e^)\G(e^)\2 + c-2-™ ) 

Solving the above equation leads to expression (2.14). 

Step 3. Sufficient condition for an extremum. The derivation in step 2 indicates that any minimizing 

curve for (2.13) under the integral constraint (2.8) and the implicit positivity constraint must have a magnitude 

response (2.14). Using the convexity of functionals, we finally prove that the solution (2.14) is not only necessary 

but also sufficient for a minimizing extremum. ■ 

It follows immediately from this last theorem that the optimum prefilter Gopt{eiu) is not unique since the phase 

information is not specified. This is not the case for the optimum postfilter Hopt(eju). We also note that whenever 

\G0pt(eja)\2 = 0, equation (2.2) simplifies to Hopt{eju) = 0 as well. 

///. FURTHER ANALYSIS OF THE OPTIMUM ONE-CHANNEL SYSTEM 

3.1. The Coding Gain Expression 

Assume that we quantize x(n) directly with b bits. We denote the corresponding mean square error (m.s.e) by 

^direct ■ We then use the optimum pre and post filters around the quantizer. With the rate of the quantizer fixed 

to the same value 6, we denote the m.s.e in this case by £„ew. The ratio Qopt = £direct/£new is called the coding 

gain of the new system and, as the name suggests, is a measure of the benefits provided by the pre/post filtering 

operation. The coding gain expression for the system of Fig. 2.1 with the optimum prefilter Gopt(eju) is given in 

the following theorem. 



Theorem 3.1.  With tie optima] choice of pre- and postfflters, the coding gain expression for the scheme of Fig. 

2.1 is 

gopt = (i + c-2-2b)-ghw (3.1) 

as long as the right hand side of (2.14) is non-negative V w. Here Ghw is the coding gain of the half whitening 

scheme and is given by 
[*   q   (piu)änL 

(/:.v^xT^)^)2 

Proof. Following the above definition, the coding gain of the system of Fig. 2.1 can be expressed as: 

Govt — 
'°Pt~     .-26    r Szz{eß») du 

(5II(e^)|G(e^)|2 + c-2-2fc)27r c-2-20- r 
J—i 

Assuming that the right hand side of (2.14) is always positive, from (2.14), one can then write: 

•     2          •                M     (l + c-2-2b)-JSxx(e^) ,„., 
\G(^')\Sxx(en + c • 2"26 = *       sJ(J>)£ • (     } 

Substituting (3.4) into (3.3), we can simplify the coding gain expression to obtain: 

gopt = (i + c-2-2b) 

(/:„ Vsi wm 
which is simply the half whitening gain Qhw (3.2) multiplying (1 + c • 2 2b). ■ 

In the case where the right hand side of (2.14) is negative over a specific interval and accordingly, |G(eJW)|   is set 

to zero, we obtain the following coding gain expression : 

nS*x(e^)£ ,-2i\ gopt = (i + c-2    ,   

where fi is the set of frequencies over which the right hand side of (2.14) > 0. We still expect the filtering 

scheme under study to outperform the half whitening scheme in this case but it is not clear how one can compare 

analytically gopt to 5/iu>- 

Example 3.1 White input still produces gain. In this example, we assume that the input x(n) is a white process 

with variance equal to one. It can be verified for this case that, |G(e^)|2 = 1 Vw. This is consistent with our 

earlier observation about the prefilter, namely that it exploits the spectral shape of the input. The post filter 

H(ejui) is a constant, independent of frequency. The coding gain of the half whitening scheme is one since it 

depends only on the spectral shape of the input. However, the more general system still produces a coding gain 

(1 + C'2-26). The gain results from the "Wiener filter part" of the postfilter and, consequently , from the resulting 

prefilter expression. 
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Remarks on The Coding Gain Expression 

1. The coding gain expression for low bit rates. It is quite clear from theorem 3.1 that the system of Fig. 

1.1 will always outperform the half whitening scheme as long as the right hand side in equation (2.14) remains non 

negative for all frequencies. The difference in performance is basically a function of the probabilistic distribution of 

the quantizer input and more important of the bit rate. The lower the bit rate the higher the coding gain will be. 

However, the problem is that as we quantize at lower bit rates, the quantizer assumptions made at the beginning 

of this section fail and all the previous analysis is not valid anymore. We have performed some side simulations to 

explore the validity of our quantizer model at various bit rates. The results show that the quantizer model used 

throughout this paper is excellent at 6 > 4, good at b = 3 and not adequate at 6 < 2. 

2. The coding gain expression for high bit rates. By letting b go to infinity, one can easily check that the 

right hand side of equation (2.14) becomes 

1 f     —.   * .}    Vw   e   [-7T,7T] 

and is positive V w. Therefore, the coding gain expression derived in theorem 3.1 can be used and as 6 go to infinity, 

Qopt becomes equal to Qhw. At high bit rate, there is no loss of generality in using the half whitening scheme. The 

same observation was first mentioned by Goodman and Drouilhet [21]. Although the final conclusion is the same, 

there are main differences between their work and ours. First, Goodman and Drouillet did not derive any coding 

gain expression. It was quantitatively unclear how much we can benefit from using the more general system of Fig. 

2.1. Second, whereas our system is a discrete time system, the system analyzed in [21] was continuous time pre and 

post-filters sandwiching a sampler and a quantizer. Moreover, Goodman and Drouillet assumed an additive white 

noise source model for the quantizer where the noise source is uniform and independent of the quantizer input and 

its statistics. Although this model is a valid one, we prefer to use the different noise model proposed in [10] by 

imposing the constraint (2.1) in the beginning of our study. Finally, Goodman and Drouillet replaced the sampler 

and the quantizer by an additive independent noise source. By doing so, the system becomes identical to the 

communication system analyzed by Costas [12]. The starting point of Goodman and Drouillet's correspondence 

is therefore Costas result. This is a different problem as we pointed out in the introduction of this paper. In our 

case, we cannot use Costas result directly. The use theorem 2.2 is essential in our derivation and it is because of 

this theorem that the quantization problem under study becomes similar to a communication problem. 

3.2. Analysis under a Colored Quantization Noise Assumption 

The previous analysis can be repeated assuming that the quantization noise is now colored. The noise power 

spectral density Sqq(eju) becomes a function of frequency. The remaining assumptions are kept the same. The 

optimum postfilter in this case can be easily rederived and is given by: 

H  l(eSu) = -— S*z(e3U)—  (35) "»„tie   )     G(e,u) S„{e>«) l     ; 

Sxx{e   )+|G(e^)|2 



The corresponding mean square error expression can be found to be: 

[' Sw(e*")S,a(e*») dw (3>6) 

J-* Sxx(e^)\G(e^)\2 + Sn{et») ^ 

We can again argue that the mean square error at the output of the system does not change by inserting a 

multiplier before the quantizer. The same type of analysis can therefore be carried out producing the following 

expression for the magnitude response of the optimum prefilter: 

' 1 . (     1 + Stq(e>u) Sqq(e>u)  \    v   w 6 r        , for which the r h s > 0 

\GoPt(eju)\2 = { 
0 otherwise. 

IV. OPTIMUM PRE AND POST FILTERING WITH FIRST ORDER FILTERS 

In this section, we will constrain H(eju) and G(e*") to be first order causal filters with monic polynomials. 

First order filters can provide a substantial boost in performance, are easy to track mathematically and are very 

economic to implement. The quantization system in Fig. 1.1 is still a uniform quantizer. We will again jointly 

optimize the first order pre- and post filters to minimize the m.s.e under the constraint (2.1). All the other 

assumptions of section II are the same as before. We will consider two main cases: a) an FIR prefilter with an IIR 

postfilter and b) an IIR prefilter with an FIR postfilter. 

-i    The nnstfilter takes the form r.   Under the 

4.1. The FIR prefilter - IIR postfilter case 

In this subsection, the prefilter is in the form 1 - az~K   The postfilter takes the form 1 _       x 

constraint (2.1), the mean square error expression is derived. It is a function of two variables a and 7 and the goal 

is to jointly optimize these coefficients to minimize the mean square error. The next theorem gives the expression 

of the mean square error. 

Theorem 4.1. Assume that the preßlter G(e*") is 1 - ae-*" and that the postGlter H(e?u) is j _ ^e_ju ■ The 

mean square error as a function of a and 7, under the constraint (2.1), is given by: 

,(„,7)  . C2- ■ d*.-)-*.^- **■.(!)   + fcL^l! . f 7~ «.(„, (4.!) 

Proof. See appendix B. 

By using u\ = c2-2ba2
y where c\ = (1 + a2) ■ Rxx(0) - 2aRxx(l), the mean square error expression of theorem 4.1 

can be rewritten as follows: 

«<«) - (T^?y + %f#'£/" R"im) (42) 

The first term in (4.2) disappears when we do not quantize the signal. In this case, the mean square error can be 

reduced to zero by setting a equal to 7, i.e., the postfilter is the inverse of the prefilter. However, in the presence 
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of the quantizer, the choice of a = 7 is not the best since the choice of 7 affects the two terms in (4.2) in different 

ways. Equation (4.2) also suggests that, at high bit rate, the contribution of the first term in the equation will be 

almost negligible compared to the second term. Hence, as b increases, we should expect the optimum coefficients 

aopt and 70pt to numerically approach each other. 

Even in this very simple case, the problem is highly non-linear in the filter coefficients a and 7. Closed form 

expressions for the coefficients of the filters in terms of only the second-order statistics of the signal cannot be 

obtained. However, minimization of the mean square error can be done numerically using for example MATLAB's 

optimization toolbox. 

4.2. The IIR premier - FIR postfilter case 

We can easily derive, from equation (4.2), the mean square error for the dual case, namely when the prefilter is 

———— and the postfilter is 1 - az-1. To see this, assume first that there is no quantization. It is then clear 

that the second term in (4.2), the error due to the mismatch of the coefficients, will not change by switching the 

position of the filters. When quantization is present, the noise term becomes (1 + a2) a2 where the noise variance 
1 °° 

&q  =  c2-2('cr2  = c2~26 • ———- • 22 7m Rxx{m) The mean square error expression is therefore given by : 
^      m=0 

1 00 , ,2       00 

£(a,j) =  (1 + a2) c2-2* • 3-^ ■ £ 7
m *,,(*») + ^^L • £ 7m fl,,(m) (4.3) 

7      m=0 ^        ^ 1      m=0 

4.3. The Special Case of First Order Filters with equal coefficients 

A. The FIR prefilter - IIR postfilter case. 

When a is equal to 7, the mean square error becomes a function of one parameter a. The coding gain can be then 

expressed as follows: 

C      = fl**(0)-(l ~ <*\yt) (     . 
y°pt        (1 + a*opt)-Rxx(0) ~ 2aopt-Rxx(l) [*A) 

If Rxx(l) = 0, then, the above coding gain expression becomes 7- °      ,. It is then quite clear that the 
(1 + a'opt) 

optimum coefficient aopt is equal to zero. No pre-and post filtering can enhance the reconstructed output and the 

coding gain is simply unity.  On the other hand, If Rxx(l) = Rxx(0), then, the coding gain expression becomes 

— 2tT-. As aopt approaches 1, the coding gain grows unbounded. The tradeoff is the stability of the inverse (l - aopt) 
filter. 

Having taken care of these two extreme cases, we now assume that 0  <   ^„(l)!   <  Rxx(0) and introduce 

the following notation:     "        =  p where -1 < p < 1. The problem expressed in this form was considered by 
*Lxx\}J) 

Jayant and Noll [10]. We will therefore only give their final results. 

1. The optimum coefficient aopt that minimizes the mean square error expression is given by: 

aopt = --(l - v7! - (A       if    - K p < 1 (4.5) 
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2. The coding gain expression as a function of p can be found to be 

1 ,  =      , (4.6) °pt    yrv 

We note that the coding gain expression (4.6) is also the coding gain of a 2-channel Karhunen-Loeve transform 

(KLT) under the assumption of optimum bit allocation. This is then a case of a one channel biorthogonal FB that 

is as good as a 2 x 2 KLT [an example of a two channel orthonormal filter bank]. 

B. The IIR prefilter - FIR postfilter case. 

When a is equal to 7, the mean square error is then given by 

(1   +   Q2) C2-26 • y-^r • £ a" ß"(m) (47) 

m=0 

In this case, the problem is highly non-linear in the filter coefficient a and an analytical solution is difficult 

to obtain. On the other hand, the minimization of the mean square error can be easily done numerically. Results 

are illustrated in the next subsection for some specific examples. 

4.4. Examples of Optimum Filters for Specific inputs 

The examples given'in this subsection correspond respectively to the cases of a MA(1), an AR(1) and an AR(5) 

input process x(n). In each case, we compare the coding gain of the general first order system [a # 7] to the 

coding gain obtained from a first order system with a equal to 7. The optimization of the coefficients is done 

numerically using MATLAB's optimization toolbox whenever an analytical expression is difficult to obtain. For 

the first two examples, we also include in our comparison the corresponding coding gain of a half whitening scheme 

for the FIR/IIR cases [the coding gain of a half whitening scheme establishes a theoretical bound on the coding 

gain of the first order one channel biorthogonal system]. 

Example 4.3.1 Case of a MA(1) process. Assume that the input x(n) is a zero mean MA(1) process with an 

autocorrelation sequence in the form 

Jfc = 0. 

otherwise. 

It is well known that a MA(1) process has to have -jf^ < V2 to ensure that the Power sPectral density is 

indeed non negative. We therefore restrict 9 to be between -1 and 1. For the FIR prefilter - IIR postfilter case, 

when Q is equal to 7, the ratio Rxx(l) / Rxx(0) is now equal to 9/(1 + 92). We therefore simply replace p in 

equations (4.5) and (4.6) by 9/(1 + 92) to obtain expressions for the optimum coefficient aopt and the optimum 

coding gain Qopi. The power spectrum of the MA(1) process is given by: 

Sxx(en  =  1 - 2(1 lg2)co8(w) (4-8) 
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Substituting (4.8) in (3.2), the coding gain expression of the half whitening scheme for a MA(1) process is given 

by 

G (i + g2)  (4.9) 

(j   y/(l + 6* - 29cos(u)) £) 

The integral in (4.9) is equal to F(-0.5 , -0.5 ; 1 ; 92) where F(a , b ; c ; d) is Gauss's hypergeometric function. 

From [22], F(-0.5 , -0.5 ; 1 ;02) can be rewritten as (1 + 9) • F(-0.5 , 0.5 ; 1 ;40/(1 + 9)2). This, in turn, 

can be simplified to (1 + 9) ■ - ■ E(2-/pi)/(l + 9)) where E{.) is the complete elliptic integral of the second 
7T 

kind. 

The optimization of the coefficients for the IIR prefilter-FIR postfilter case and the FIR prefilter-IIR postfilter 

with a ^ 7 were all done numerically using MATLAB's optimization toolbox routine "fmins.m". The plots of the 

coding gain for the FIR/IIR case are illustrated in Fig. 4.1, Fig. 4.2 and Fig. 4.3 as the bit rate b varies from 1 to 

3. Similarly, the plots of the coding gain for the IIR/FIR case are shown in Fig. 4.4, Fig. 4.5 and Fig. 4.6 also as 

b varies from 1 to 3. From these figures, we can observe that as the bit rate increases, there is no loss of generality 

in assuming a to be equal to 7. We also note that the coding gain obtained in the FIR/IIR case is higher than 

the dual case for the same process and bit rate. This is primarily due to the fact that the optimum coefficients in 

the IIR/FIR case are numerically close to zero and the coding gain is therefore close to one. 

Example 4.3.2. Case of an AR(1) process. Assume that the input x(n) is a zero mean AR(1) process with an 

autocorrelation sequence in the form Rxx(k) = p|fc| where p must be between -1 and 1. 

For the FIR prefilter - IIR postfilter case, when a is equal to 7, the ratio fi„(l)/JJ«(0) is equal to p. aopt is 

therefore given by (4.5) and the coding gain Qovt is given by (4.6). The power spectrum of the AR(1) process is 

5ll(eJW)  =   1 + p2  _ 2pcos(u) 

Substituting (4.10) in (3.2), the half whitening coding gain expression for the AR(1) process is as follows: 

Gkm' - tr      l   1     ^V (4'H) 
(1
 P)' IL y/{\ + P2 ~ 2pcos(u;)) 2K) 

The integral in (4.11) is equal to f • K(p) where K(p) is the complete elliptic integral of the first kind [22]. 

The optimization of the coefficients for the IIR prefilter-FIR postfilter case and the FIR prefilter-IIR postfilter 

with Q^7 were all again done numerically using MATLAB's optimization toolbox routine "fmins.m". The plots 

of the coding gain for the FIR/IIR case are illustrated in Fig. 4.7, Fig. 4.8 and Fig. 4.9 as the bit rate b varies 

from 1 to 3. Similarly, the plots of the coding gain for the IIR/FIR case are shown in Fig. 4.10, Fig. 4.11 and 

Fig. 4.12 also as b varies from 1 to 3. The observations mentioned at the end of the previous MA(1) example still 

hold for this case. 

Example 4.3.3 Case of an AR(5) process.  The autocorrelation function of such a process extends to infinity 

and doesn't have a simple closed form expression.   The main problem is the infinite summation in the form 
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f; 7m Rxx(m) found in equations (4.2), (4.3) with a ^ 7 and (4.7) with 7 = a. Our approach is to truncate 

This0 infinite summation with the assumption that after a certain lag m, the correlation coefficients are negligible. 

For this AR(5) process, we set Ä(0) = 1, Ä(l) = 0.86, R(2) = 0.64, Ä(3) = 0.4, Ä(4) = 0.26, Ä(5) = 0.2 and 

Ä(mj _ 0 V m > 6. The values of the correlation coefficients are obtained from page 37 in [10]. Table 1 

summarizes our coding gain results in db for the different cases and bit rates. Again, as 6 increases, we observe 

that there is almost no loss in coding gain if we assume that a = 7. We also observe that, at low bit rate, 

e.g. b = 1, the coding gain of the more general system is very small. This suggests that the gain obtained from 

searching over a more general class than the biorthogonal class may not be worth the added complexity. Finally, 

as was the case for the two previous examples, the FIR/IIR scheme outperforms substantially the dual case. 

V. REPLACING THE QUANTIZER SYSTEM BY AN ORTHONORMAL UNIFORM PRFB 

Consider the M channel maximally decimated uniform SBC of Fig. 1.2. The boxes labeled Q are modeled 

by additive noise sources in the manner described in the introduction. Throughout this section, we will assume 

that the subband quantization noise sources are white and pairwise uncorrelated. If we interpret this FB as a 

sophisticated quantizer, the use of pre- and post filters around the FB can very well increase the coding gain. In a 

recent paper, Djokovic and Vaidyanathan [16] analyzed the system of Fig. 1.1 where the quantization system QS 

is a uniform orthonormal PRFB and the postfilter is the inverse of the prefilter. The authors gave a formula for 

the optimum allocation of bits in the subbands. Furthermore, they showed that minimizing the mean square error 

of the so called prefiltered paraunitary (PPU) PRFB can be done by separately optimizing the pre/post filtering 

scheme and the orthonormal filter bank. Their proposed solution was a half whitening scheme sandwiching an 

optimum orthonormal PRFB. A generalization of the scheme of Djokovic and Vaidyanathan would be again to 

relax the assumption that the postfilter is the inverse of the prefilter. An analytical optimum solution, if it exists, 

must incorporate the joint optimization of the orthonormal PRFB and the pre- and post filters. It is not clear that 

a separate optimization of the pre- and post filters and the orthonormal PRFB still holds in this case. Furthermore, 

any developed optimum bit allocation formula must include the pre-and postfiltering operation. 

In the remainder of this section, we will not attempt to solve the problem described above. We will instead 

provide a suboptimum procedure that relies on the results derived in section II. We will see that even in this simpler 

case, two theorems must be first established. The first step in the procedure is to optimize the orthonormal uniform 

PRFB for a certain WSS input *(n). Several authors have recently shown [6], [8],[9] that the optimum orthonormal 

uniform PRFB, the one that maximizes the coding gain as defined in section III, will consist of antialias filters. 

A discrete time filter is said to be an antialias(M) filter if its output can be decimated M-fold without aliasing. 

Since this requires infinite attenuation in the stopbands, anti-alias filters are therefore a class of ideal filters. The 

second step in the procedure is to perform the optimum bit allocation operation in the usual way [23]. After 

optimally allocating the bits, we would like to apply the pre- and post filters derived previously in section II. 
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In order to do this, we need first to replace the whole optimum orthonormal PRFB by an additive noise source, 

say v(n). This noise source v(n) must be WSS and uncorrelated with the prefilter output y(n). Second, the 

variance of the input process a\ must be related to the PRFB output noise variance SSBC in a similar fashion 

as in equation (2.1). A major problem is the following: In the presence of quantizers, it is well known that the 

output of a uniform/non uniform PRFB is in general a cyclo-wide sense stationary (CWSS) process. The cyclo 

wide sense stationarity is due to the passage of the quantization noise through the interpolators [24]. We provide 

two results describing important cases that guarantee the wide sense stationarity of the quantization noise of a 

uniform orthonormal PRFB. Since the results hold for the non uniform decimation case, the proofs will assume 

a non uniform maximally decimated orthonormal PRFB case. A non uniform SBC, shown in Fig. 5.1, is a SBC 

with unequal subband decimation ratios nk. The boxes labeled Q represent, as before, uniform quantizers that 

are modeled by additive noise sources. 

Theorem 5.1. Under optimum bit allocation, the output noise of a [possibly non uniform] orthonormal PRFB is 

WSS provided the subband quantization noise sources are White, Uncorrelated and Zero Mean (WUZE assump- 

tions). 

Proof. The proof is now established through the following series of steps: 

1. Soman and Vaidyanathan [23] showed that for a non uniform orthonormal PRFB, the variances of the subband 

quantization noises should be equal under optimum bit allocation. Because we are assuming optimum bit allocation 

in our theorem, we can immediately conclude that the noise variances in the non uniform orthonormal PRFB should 

be equal to each other. 

2. It is well known [25],[26],[27] that an M channel non uniform FB can be redrawn as an L channel maximally 

decimated uniform FB where L = nkpk. The M set of analysis and synthesis filters {Hk(z),Fk(z)} are replaced 

by the set of L filters {Hk(z),F'k(z)} in the uniform system where L > M. The main goal at this point is to 

develop the form of the power spectral density matrix of the subband quantization noise Sqq(e-,a') in the equivalent 

L channel maximally decimated uniform FB. We first observe that the white noise assumption guarantees that, 

for the kth channel, the quantization noises in its corresponding pk channels are uncorrelated. Furthermore, 

the variance of the quantization noise is the same in all the pk channels. Combining this observation with the 

conclusion of step 1, it is easy to see that Sqq(e-'ü') should be equal to o2
qI where Sq^e^) is an L x L matrix. 

3. Since the non uniform maximally decimated FB is orthonormal and exhibits the perfect reconstruction (PR) 

property, then, it follows that the analysis polyphase matrix E'(eju) of the equivalent L channel uniform FB is 

lossless , i.e., E' (eJ'lJ)E'+(eju;) = I (orthonormality) and the synthesis polyphase matrix R^e*") of the equivalent 

L channel uniform FB is equal to E'\eju) (PR property) [26]. The power spectral density matrix of the output 

quantization noise Svv(eJa') is equal to R'(e-"J)sqq(eJW)R' (eJW) which can be evaluated as tfl using the above 

properties. This means that the output noise v(n) is an interleaved version of L uncorrelated white noise sources, 
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each of variance a*. So, v(n) itself is white with variance a2
q. ■ 

Since the above theorem holds for a non uniform maximally decimated orthonormal PRFB, it includes the uniform 

decimation case. The output quantization noise v(n) in theorem 5.1 is white with variance a\. Furthermore, v(n) 

and y(n) are uncorrelated. The problem with the optimum bit allocation is that it yields non integer solution for 

the bits. If we use a simple rounding procedure or a more sophisticated algorithm [28] to obtain integer solutions, 

the assumption of equal quantizer noise variances is not valid any more. Nevertheless, in the next theorem, we 

prove that even with the more practical assumption of different quantization noise variances, the output of a 

non-uniform orthonormal PRFB with antialias filters will be wide sense stationary. 

Theorem 5.2. The output noise of a [possibly nonuniform] orthonormal PRFB consisting of antialias filters is 

WSS provided the subband quantization noise sources axe zero mean and pairwise uncorrelated. 

Proof. Consider the synthesis bank of a non uniform PRFB. The quantization noise sources qk(n) at the input 

of the interpolators are assumed to be individually WSS with power spectrum Sqk(eju) and are pairwise uncorre- 

lated. Since the filters Fk(eju) axe antialias for all k, then, the upsampled and filtered noise sequences Vk(n) are 

individually WSS [24]. Furthermore, since the interpolated noise sequences Vk(n) are linear combinations of the 

input noise sources g*(n), the uncorrelatedness property is preserved. This can be verified by writing the output 

vector v(n) as a time varying linear combination of the vector q(n) and taking expectations. The interpolated 

noise sources Vk(n) are therefore jointly wide sense stationary which implies that their sum v(n) is WSS. ■ 

We emphasize the fact that neither the whiteness of the noise sources nor the equal variance assumptions are 

required for this theorem to hold. We note that the output quantization noise v(n) in theorem 5.2 is still uncor- 

related with the prefilter output y(n). However, in this case, v(n) is not white. If the subband quantization noise 

sources are white, it is easy to see that the power spectral density Svv(ejiJ) of the PRFB output noise is piecewise 

constant. The magnitude of each piece of Svv(ejuJ) is equal to aqk for some A;. The location of the constant piece 

is determined by the passband of the corresponding synthesis filter F*(e7'w). The variance of the output noise v(n) 
1   M-l 

is the average of the individual noise variances — ^J a\k • 
k=o 

The above two theorems permits the continuation of our suboptimum procedure. The optimum bit allocation 

[without including the pre- and post filters] allows us to relate the variance of the input process o~\. to the FB 
c2-26 

output noise variance SSBC by ESBC   =   ~p,  ü\-  The optimum orthonormal FB is a special case of a non 
ypu 

uniform PRFB with antialias filters for which theorem 5.2 applies. The FB can be therefore modeled as a WSS 

noise source that is uncorrelated with the prefilter output sequence y(n) and has a variance proportional to a\. 

This is the perfect setting for our previous pre- and post filtering analysis. The complete system is shown in Fig. 

5.2. The expressions for the optimum postfilter and the magnitude response of the optimum prefilter are given 

respectively by (2.3) and (2.14) if the noise v(n) is white [case of theorem 5.1] or by (3.5) and (3.7) if the noise 

v(n) is colored [case of theorem 5.2].  For either cases, the coding gain of the system of Fig.  5.2 can be easily 
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c-2b 
obtained as (1 + -—) GhwGpu provided the right hand side of (2.14) or (3.5) is always positive. The next toy 

GPU 
example illustrates the above procedure and provide some numerical results. 

Example 5.1. We assume that the input x(n) is a zero mean, real, WSS random process with a triangular power 

spectral density Sxx{eiu>) as shown in Fig.  5.3.  The optimum orthonormal FB in this case is the well-known 

contiguous ideal brick wall FB [6], [7], [8], [9]. The coding gain of an orthonormal FB after the optimum allocation 

of subband bits is in general given by [23]: 

-2 

GPU  = rM-l     2,VM 

where a\ is the variance of x(n) and a\k is the variance of the kth subband signal. For the ideal brick wall FB and 

a triangular power spectral density, the above coding gain expression can be simplified to the following expression: 

G PJ  
(nf^d - (2k + l)/2M))/ 

We then apply the optimum pre- and post filters at the input and output of the FB respectively. For an average 

bit rate 6 = 3, the constant c = 0.75 and the number of channels M = 2, it can be verified that the optimum 

prefilter [in both cases of white and colored noise] is never set to zero at any frequency and, therefore, we can use 
c-26 

the formula Gopt = (1 + -—) GhwGpu- Using the above data, we obtain GPU = 4? and Ghw = f • Finally, the 
GPU V 

theoretical bound on the coding gain, namely the prediction gain, is given by [1]: 

„2 

Gth   = exp{£jn{Sxx{e^))%} 

For this case, Gth is equal to -. Expressing the above quantities in db, we get : GPU = 0.625 db, Ghw = 0.51 db, 

Gopt — 1-19 db and Gth = 1-33 db. It is important to observe the relative gain obtained using the pre- and post 

filtering operation rather than the absolute increase in coding gain. Clearly, we get a substantial increase by using 

the pre- and post filters as Gopt approaches Gth- 

VI. CONCLUDING REMARKS 

In this paper, we have studied pre- and post filtering around a quantization system QS under the key 

assumption that the quantization noise variance ü2
q is proportional to the variance of the quantization system 

input. For the case where QS is a uniform quantizer, we provided joint optimum solutions for the ideal pre- and 

post filters. Using these solutions, we then derived a coding gain expression for the system of Fig. 1.1. The 

importance of this expression is that it clearly indicates that, at high bit rate, there is no substantial loss of 

coding gain if we set the postfilter to be the inverse of the prefilter. We then considered two cases of first order 

pre- and post filters: FIR/IIR and IIR/FIR. For each case, we obtained a mean square expression, optimized 

the coefficients a and 7 and compared coding gain performances with the case of a equal to 7 through a set 
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of examples. Finally, we considered the case where the quantization system QS is an orthonormal FB. To be 

able to apply the previously optimized pre- and post filters at the input and output of the FB respectively, we 

developed two theorems that guaranteed the wide sense stationarity of the filter bank output. We emphasize again 

that applying the pre- and post filters in the manner described in section V is suboptimum. While this paper 

deals with some of the current issues in the subband coding area, it opens up other interesting and challenging 

problems. One example that quickly comes to mind is the extension of this work to the M channel case. A globally 

optimum solution should include a strategy for the allocation of the subband bits as well as a joint optimization 

of the analysis and synthesis sections of the SBC. Another problem is the optimum generalization of Djokovic and 

Vaidyanathan's scheme. If fully optimized, the more general scheme of Fig. 5.2 should outperform the scheme 

proposed by Djokovic and Vaidyanathan. An easy way to see this is to simply put a Wiener filter at the output 

of the half whitening filter sandwiching an optimum orthonormal PRFB. Even in this suboptimum procedure, the 

mean square reconstruction error cannot increase. Finally, the coding gain expression (4.6) for a first order FIR 

prefilter/ IIR postfilter leads to another interesting question. As we observed before, equation (4.6) is also the 

coding gain of a 2-channel Karhunen-Loeve transform under the assumption of optimum bit allocation. This is 

therefore the case of a first order half whitening scheme performing as good as a 2x2 KLT [case of a 2-channel 

orthonormal FB]. This is interesting in view of the fact that the asymptotic coding gain of a KLT is higher than 

that of a half whitening filter. A natural question then arises: how does the coding gain of a KLT of block length 

(M + 1) compare to the coding gain of a half whitening scheme of order M ? The answer to this question remains 

open. 

Appendix A. 

Step 1. We have argued in the proof of theorem 2.3 that the parameter A(w) is independent of frequency. We 

proceed to prove that it is a positive constant. Assume for the moment that ß{u>) is equal to zero in (2.17) and 

denote the integrand of (2.17) by F 4- \W where 

F= —  "}     ]     and    W = Sxz(e>a)\G(e>u)\ 
S«(e*")|G(e*")|a + c-2-26 

From the theorem on page 43 in [18], we see that if |G(eJU,)|2 is an extremum of (2.17) with ß(u)  =  0 [but 
2 

is not in the same time an extremum of W], then, there exists a constant parameter A such that öF/ö|G(eJa,)|   + 

dW/d\G(eju)\2  = 0 for all u. Since \G{eju)\2 is not an extremal for W, then, there is a w0 such that 

dW/d\G{e^)f ^ 0 at u = u0. This yields 

dF/d\G(e^)f 
dW/d\G(e>»)\2 

(Al) 

The numerator and denominator of (A.l) are found to be: 

»" c2-'S„(«*-)'  &        _™L_ = <,„(,*) {A.2} 
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Substituting (A.2) into (A.l), we obtain the following: 

c-2- 

(sxx(e^)\G(e*')\2 +C-2-A 
X = — *xx(e   ' j (A3) 

which in particular shows that A > 0. 

G{tßu\ 

1. Define G' to be the derivative of \G(ejw)f with respect to u. The Legendre condition [18], 

Step 2. The necessary conditions for \G(eju)f to be a minimum of (2.16) are summarized next. 

Ö2 

^{F + XW)>0   Vw 

must be satisfied. In our case, this condition is satisfied trivially because neither the functional (2.14) nor the 

constraint (2.8) are functions of the derivative of |G(eJU')l • 

2. \G(eju)\2 must satisfy the Euler-Lagrange equation for the functional (2.16) i.e \G(ejiJ)\   must satisfy (2.17). 

The Euler-Lagrange equation (2.17) is a pointwise relation that must be satisfied at all frequencies. The value of 

the unknown parameter ß(u) in the right hand side is therefore set according to two criterions: First, the choice 

of ß{ui) should not violate the Euler-Lagrange equation at any frequency. Second, the choice of ß(u>) should insure 

the positivity of the-solution at all frequencies. There are therefore two possible values for ß(u). 

Case of ß(u>) = 0.   Assume first that ß(uS)    =   0.   The left hand side of (2.17) becomes zero and, in this 

case, equation (2.17) can be interpreted as the Euler-Lagrange equation for an exactly similar problem without a 

positivity constraint on the solution. Therefore, for those frequencies where ß(w) = 0, the positivity constraint is 

actually ineffective and the solution we obtain must be > 0 at those frequencies. The optimum magnitude squared 

repose \Gopt(eju)f in this case is determined from (2.17) with the right hand side set to zero. Perform the partial 

differentiation in (2.17) and equating the result to zero, the following equation can be obtained: 

/ 0 \2 0-26 
(sxx(en\G(ejw)\  +c-2-2bj   = £-1—. SM(e*") (A4) 

Taking the square root of (A.4) and simplifying, we get: where 7 = vA. 

0        1     / r ■ 1-2b r ■ 2~2b 

P^-WS^I-ä^) (A5) 

where 7 = y/X. Substituting \G(eju)\   as in (A.5) into the constraint (2.8), we obtain: 

Hence, the constant 7 is given by: 

J —7T 
7: 

l + c-2-26 
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Substituting 7 as in (A.7) in (A.5), we therefore obtain the first part of (2.14), namely that: 

for all frequencies for which the right hand side of (A.8) is non-negative. 

Case of ß(u) ^ 0. At some particular frequency, the solution obtained in case 1 might turn out to be negative. 

The positivity constraint is obviously violated. At such a frequency, ß(w) should not bet set to zero anymore. 

Since the Euler-Lagrange equation must be satisfied at all times, we must set ß{w) to be equal to: 

8 (        c-2-2b-Sxx(e3U) +A-5II(e^)|G(e^)|2 

0|G(e^)|2 VS„(e*")|G(e*0)|2 + c • 2~26 

The sign of ß(u) in this case is important to make sure that the positivity constraint is not violated. For our 

problem, ß(u) should be non positive. Finally, it remains to find the value of \Gopt{e3U>)\ when ß(u) # 0. The 

Euler-Lagrange equation cannot be used anymore because it determines the unknown parameter ß(w). However, 

we can simply observe that \Gopt(eju)\2 cannot be greater than zero. According to the first case, if \Gopt{e>u)\ 
0 

is set to any value greater than zero, ß{w) should be zero. The only possible remaining value for |Gopt(e
,a')|   is 

therefore zero. This'argument establishes the second part of (2.14). 

From the above construction, we see that \Gopt(e^)\2 is a smooth function of ui (i.e it is continuous with 

continuous first order derivative) everywhere except at the frequencies where it has to be forced to zero (so it 

does not turn negative). The frequencies uk at which \Gopt{eiuJ)f is set to zero are called corner points. To be 

an acceptable piecewise smooth solution, \Gopt(e
iul)\2 must satisfy the so called Weistrass-Erdmann conditions at 

those frequencies. In our case, the Weistrass-Erdmann conditions reduce to the requirement that the integrand in 

(2.17) be a continuous function of w at the corner frequencies uk. This requirement is indeed satisfied because the 

integrand is a continuous function of \G(eju)\2 which in turn is continuous in u even at the corner points uk 

Step 3. We would like now to prove that the magnitude response expression (2.14) is not only necessary but also 

sufficient for the optimality of the prefilter. We introduce the following notation by rewriting (2.17) as follows: 

r(/1(w)y(«)) + /2(a;>V(u;)) + /s(«,»M)^ (A.9) 

cr2q-Sxx(e^) 
where 

/2(w,»(«)) = A-5M(^)-y(u;) 

/8(w,VM) = /?(«)• y(w) (A10) 

y(u) = \G(en\2 
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Before proceeding further, we can now summarize the following useful facts from [19]: 

factl. The sum of a convex function with one or more convex functions is again convex. 

fact2.  If f(uj,y(uj)) is convex on [-it,it]   X V, then, J[y(u)} = fZnf(v,v(f>))& is convex on V. Hence, each 

y{u) € V that satisfies the necessary conditions of step 2 minimizes J[y(oj)} on V. 

From the above two facts, it is then clear that to prove that the solution (2.14) is a minimizing curve, we 

simply need to prove the convexity of /<(w, y(u)) V i. The convexity of f{(u, y(u)) on [-it, it] x V can be established 

by using anyone of the following two conditions: 

1. The following inequality must be satisfied V (u,y(u)) and V (u,j/(u/) + «(«)) € [-ir,ir]  x V : 

fi(u,y(u) + v(uj))-fi(u,y(uj)) > (j^jfifavM)) '«M <A11) 

{A.12) 

2. The matrix of second partial derivatives 

fyy       fyy' 
f ,    f, , 

LJvv     Jv y 

must be positive semidefinite on [—it, it]  x V. 

In the above two conditions, all the partial derivatives are assumed to be continuous on [-it,it]   x V.   The 

notation y is used for the derivative of y(w) with respect to u. We use condition (A. 11) to prove the convexity of 

f2(ui,y{u)) and h(u,y{uj) and condition (A.12) to prove the convexity of fi(w,y(u>)). 

Convexity of f2(w,y(u>)) and f3(w,y(w)). Assume first that }{w,y{w)) = f2(u,y(u)) in (A.ll). It is then easy 

to check, in this case, that the right hand side of the equation is equal to the left hand side. In fact, both sides 

will be equal to A ■Sxx(eju) -v(w). Similarly, when f(u,y(w)) = f3{u,y(uj)), the right hand side of (A.ll) is equal 

to the left hand side of the same equation. The two sides are, in turn, equal to ß[u) ■ V(UJ).  This establish the 

convexity of both /2(u>,y(w)) and f3(u,y(u)). 

Convexity of fi(w,y(w)). When f(u,y(u)) = fi(w,y(u)), then, we first observe that the matrix in (A.12) can 

be simplified to the following form: 

(A13) fyy    0 
0     0 

For this matrix to be positive semidefinite, the principal minors should be non-negative. From (A.13), this is 

equivalent to proving that fyy > 0 V u. Differentiating /i(w,y(w)) twice with respect to y(u), we obtain the 

following equation: 

fyy  =    .       a2<-S"{eJU) (A.14) 

(s„(e*")-yM + <rJJ 

Since all quantities in (A.14) are positive, then, the condition (A.12) is indeed satisfied and fi(u,y(u)) is convex. 

Using the convexity of the above functions and facts one and two, we conclude that the solution (2.14) is a mini- 

mizing extremum. ■ 

21 



Appendix B. 

Using the following set of equations: 

e(n) = x(n) - x(n) 
OO 

x(n) = z(n) ® h(n) = ^J Jkz(n — k) 
k=o 

z(n) = y(n) + q(n) 

y(n) = x(n) — ax{n — 1) 

we can easily verify by direct substitution that the error process at the output of the postfilter is given by: 

00 oo oo 

e(n) = x(n) - ^ 7*z(" - *) + Q ' ^Z 7*x(n - * - 1) - ^ 7*?(n - k) 
k=o *=o *=o 

oo oo 

= (-  - 1) £>**("-*) " £7*<7(n-*) 
7 *=i it=o 

The mean square error expression is defined to be £ = E{e2(n)}. This, in turn can be written as: 

(B.l) 

KOO OO N 

(-  -  l)J3A(n-*) -  2>*9(n-*)J 
(oo oo V   ■> 

(£  _ l)£7'x(n-/)  - ^yg(n-O) 
~ 1=1 1=0 '  ' 

(B.2) 

This last equation can be simplified using the following assumptions about the noise process q(n): 

1. White noise assumption. E{q(n) ■ q(n — k)} = (T26(n — k). 

2. Variance constraint assumption.  The noise variance a2 is equal to c2~2ba2 where a2 is the variance of the 

quantizer input. Hence, a2 = c2~2b(Rxx(0)(l + a2) — 2aÄIX(l)). 

3. Uncorrelatedness with x(n). The sequence x(n) and q(n) are assumed to be uncorrelated. Hence, 

E{x(n) ■ q(n - k)} = E{q(n) ■ x(n - k)} = 0   V k 

Based on the above assumptions, equation (B.2) can be therefore simplified.    The result gives the following 

expression for the mean square error: 

oo 
Ik 

£ =c2-2b((l + a2)Rxx(0) - 2aRxx(l))f2^ 
\ ' t—n 

+ (f - ^ EE^»(^-') 
*-° (B.3) 

*=ii=i 

This last expression consists of two terms and can be further simplified. The first term of (B.3) can be rewritten 

as follows: 

c2-2fc((l + a2)Rxx(0) - 2aRxx(l)\    1   * (B.4) 
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For the second term, we make the change of variable m = k — I to obtain: 

( \ 2   oo oo / \2    oo 

7      '     J=l        m=0 '      m=0 

Adding (B.4) and (B.5) we obtain the mean square error expression of theorem 4.1. ■ 
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^^^ b=  1 b = 2 b = 3 

FIR/IIR 
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FIR/IIR 
a = Y 1.96 1.96 1.96 

IIR/FIR 
0.4 Y 1.091 1.087 1.086 

IIR/FIR 

a = Y 
1.0852 1.0852 1.0852 

Table 1. The coding gain obtained from first order filters for the AR(5) case of example 4.3.3. 
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